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We demonstrate that under certain conditions, fractional Talbot revivals can occur in heterostructures of
composite metamaterials, such as multilayer positive- and negative-index media, metallodielectric stacks, and
one-dimensional dielectric photonic crystals. Without recourse to the paraxial approximation, we also obtain
Talbot images for the feature sizes of transverse patterns smaller than the illumination wavelength. A general
expression for the Talbot distance in such structures is derived, and the conditions favorable for observing
Talbot effects in layered heterostructures are discussed.
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The Talbot effect, or the repeated self-imaging of periodic
patterns, is one of the most basic phenomena in optics. As a
consequence of Fresnel diffraction, periodic patterns can re-
appear �also called a revival image�, upon propagation, at
integer multiples of the so-called Talbot distance, ZT
=2a2 /�, where a is the spatial period of the pattern and � is
the wavelength of the incident light. In addition to full reviv-
als, fractional revivals with modified periods occur at dis-
tances that are rational fractions of the Talbot distance—i.e.,
z /ZT= p /q, where p and q are coprime integers. This remark-
able self-imaging phenomenon has also been demonstrated
in temporal �1–3� and spectral �4� domains in many areas of
physics from classical optics to quantum matter waves, such
as gradient-index lenses �5�, waveguide arrays �6�, atomic
and molecular wave packets �1,2�, and Bose-Einstein con-
densates �3�. Recent investigations have revealed that the
Talbot effect is far more than a mere optical curiosity. It is
deeply connected to classical number theory and the intricate
structure of physics �7�. Talbot effects have possible applica-
tions in optical free-space interconnects �8�, integrated op-
tics, and integer factorization schemes �9� in optical comput-
ing. In parallel, several new types of composite
metamaterials with sophisticated electromagnetic properties
have been developed �10–14�. These materials may lay the
foundation for futuristic integrated optics and electronics.
The ability to control light in certain metamaterials has thus
both scientific and practical importance. It is therefore inter-
esting to explore Talbot effects in composite metamaterials
and potential applications involving the fractional Talbot
effects—e.g., imaging in material fabrication to increase the
spatial frequencies of periodic patterns. One way to control
wave diffraction is to construct multilayer photonic struc-
tures. Although one-dimensional �1D� periodic structures
have been studied profusely, such systems still continue to
reveal some interesting results �15–21�. Previous works have
shown that photonic bands cannot only control the transmis-
sion frequencies, but also affect wave diffraction �19–22�,
leading to nondiffracting beams �22� and high-resolution im-
aging �21�. Typically Talbot images have been demonstrated
in homogeneous media with feature sizes larger than the
wavelength. The higher-order diffraction destroys the Talbot
images when the feature sizes are smaller than the wave-
length. In this paper, we show that through photonic engi-
neering of wave diffraction, the fractional Talbot effect can
be observed for subwavelength features of transverse pat-

terns in inhomogeneous media, such as multilayer positive-
and negative-index �PNI� materials, metallodielectric �MD�
nanofilms, and low-dimensional double-dielectric �DD� pho-
tonic crystals. A general expression for the Talbot distance in
layered heterostructures is derived and confirmed numeri-
cally.

In any homogeneous medium, the monochromatic elec-
tromagnetic field vectors and the corresponding wave vector
always form a right-handed set �E ,B ,k� independent of the
constitutive relations of the materials. Therefore, the conti-
nuity of the tangential field components E� and H� at the
interface leads to a reversed sign of the normal component
�k�� of the wave vector when the light is incident from a
right-handed medium �RHM, ��0, ��0� to a left-handed
medium �LHM, ��0, ��0� and vice versa, while the con-
tinuity of the tangential E� and the normal B� leads to the
continuity of the tangential component �k�� of the wave vec-
tor at the interface.

In modeling heterostructures, we assume the permittivity
and permeability to be constant for the positive-index mate-
rial and frequency dependent for the negative-index material.
The metal is assumed to have constant permittivity and
frequency-dependent permittivity. The frequency-dependent
permittivity and permeability are given by the Drude model:

�2 = 1 −
�e

2

�2 + i��e
, �2 = 1 −

�m
2

�2 + i��m
, �1�

where �e and �m are, respectively, the effective electric and
magnetic plasma frequencies and �e and �m are the corre-
sponding damping factors. The layer thicknesses are d1 and
d2, respectively, for the positive- and negative-index materi-
als. The spatial period is d=d1+d2; thus, ��z+d�=��z� and
��z+d�=��z�. In our layered heterostructures, the index 1
refers to the positive-index material while the index 2 refers
to the negative-index material, metal, or dielectric with
higher refractive index. We consider TM modes �Hz=0� and
solve for the magnetic field out of convenience. A similar
result can be carried out for TE modes. The vector wave
equation for a monochromatic field H=H�r�exp�−i�t� is
�� ��−1��H�= �� /c�2�H. Thus, the equation for the x and
y magnetic field components becomes �19�
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where k�
2 =kx

2+ky
2 is the transverse wave number and kxHx

+kyHy =0. The eigenmodes of the periodic structure are
Bloch waves, and the dispersion relation is given by �23�
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where 
i
2=k�

2 − �� /c�2�i�i �i=1,2� and 	 is the Bloch wave
number. The existence of Bloch modes requires that

cos�	d� 
 �1. It is well known that when this condition
holds, the Bloch modes represent propagating waves. More-
over, all-evanescent modes �
i

2�0 for i=1 and 2� can also
exist �23�. In such scenarios, the Bloch modes represent the
transmission of coupled evanescent waves. Equation �3� also
represents the diffraction relation in the multilayer medium
from which the diffraction curve, 	 versus k�, can be de-
rived. Thus, wave diffraction in the multilayer structure can
be constructed from a superposition of Bloch modes:

Hx,y�r� =� dkxdkyH̃x,y�kx,ky�u	
*�0�u	�z�

�exp�ikxx + ikyy + i	z� , �4�

where H̃x,y�kx ,ky� is the spectrum at the z=0 plane and

u	�0�
2=1. The superposition in Eq. �4� is limited to a single
photonic band. Since the Talbot distance �ZT� is much larger
than the period �d� of the multilayer structure, one can take
the image at the distance of an integer multiple of the period
closest to the Talbot distance—i.e., ZT=md+��md, where
m is a large integer and ��ZT. Using the fact that u	�md�
=u	�0�, Eq. �4� can be simplified as �24�

Hx,y�r� =� dkxdkyH̃x,y�kx,ky�exp�ikxx + ikyy + i	z� . �5�

To produce the fractional Talbot effects from Eq. �5� requires
a quadratic diffraction upon propagation. This can be ob-
tained by properly choosing parameters that satisfy Eq. �3�.

To effectively choose the system parameters and for com-
parison purposes, we also evaluate the dispersion relation
�Eq. �3�� within the paraxial approximation �whereby
k��	0, where 	0 is the center Bloch wave number 	0

	�k�=0��. We thus take the Taylor expansion of Eq. �3� at
	=	0:
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where Y is the right-hand side of Eq. �3� and d is the period
of the structure. In the above expansion, the odd derivatives
vanish since Y is an even function. The fourth derivatives
arising in the higher-order terms are given by
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Near the band edges, sin�	0d��0, and subsequently the first
terms in Eqs. �7� and �8� grow rapidly. Thus, quadratic dif-
fraction is achievable around the middle of the transmission
bands with a reasonable spatial bandwidth. Figure 1 shows
the diffraction curves obtained from the exact formula, Eq.
�3�, and from the quadratic approximation, Eq. �6�, for the
MD �Fig. 1�a�� and DD �Fig. 1�b�� stacks. In Fig. 1, the
diffraction curve in the two heterostructures is nearly qua-
dratic. For comparison purposes, the diffraction curve of free
space and its quadratic approximation are shown. All the
curves are terminated at the cutoff frequency of the corre-
sponding medium �beyond that the spatial components can-
not be transmitted�. In the PNI stack, the phase compensation
effect of the negative-index material leads to diffraction
compensation. Hence, quadratic diffraction can also appear
near band edges when approaching the nondiffraction limit.
Figure 2 shows the diffraction curves near the middle of the
band �Fig. 2�a�� and near the band edge �Fig. 2�b�� in the PNI
stack. The coincidence of the exact diffraction with the qua-
dratic curve indicates quadratic diffraction inside the PNI
stack. Also the diffraction in the PNI stack is much less than
that of free space. Notice that in Figs. 1 and 2, the cutoff
spatial frequency in heterostructures is higher than that in
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FIG. 1. �Color online� Diffraction curves in �a� the metallodi-
electric stack and �b� the double-dielectric stack. The blue solid
curve is exact from Eq. �3�. The green dashed curve is the quadratic
approximation Eq. �6�. The parameters in �a�: �=632 nm, �1

=2.66, �1=�2=1, �e=0.0 fs−1, and �e=9.8 fs−1 which gives �2

=−9.797 from the Drude model, d1=120 nm, and d2=30 nm. The
parameters in �b�: �=1550 nm, �1=1, �1=�2=1, �2=7.6, d1

=60 nm, and d2=160 nm. As a comparison, the free-space diffrac-
tion is shown in the red dash-dotted curve �exact� and the cyan
dotted curve �quadratic�.
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free space. This property will lead to a higher resolution
when transmitting images through the metamaterials. For
simplicity, we assume that the periodic pattern has the same
spatial period in the x and y directions. Substituting Eq. �6�
into Eq. �5� and changing the integration into double sum-
mations since the spectrum is discrete, we obtained the Tal-
bot distance in the layered heterostructures as

ZT =
a2d sin�	0d�
�Y�k1,k2�

, �9�

where a is the spatial period of the pattern and Y�k1 ,k2� is
given by

Y�k1,k2� = � �2Y

�kx
2	
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2	
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The coefficients read
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where ki
2= �� /c�2�i�i, i=1,2.

To confirm our theoretical predictions, numerical simula-
tions of fractional Talbot images are demonstrated in Fig. 3
for the PNI stack, in Fig. 4 for the MD stack, and in Fig. 5
for the DD stack. In those figures, the left plot is the original
2D square array while the right plot is the corresponding
image at the fractional Talbot distance. The numerical results
were obtained from Eq. �5� where the 	 was solved numeri-
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FIG. 2. �Color online� Diffraction curves in the multilayer
positive- and negative-index materials. �1=2.66, �1=1, �e

=780 GHz, �m=0.8�e, and �e=�m=0.0 fs−1. �a� Near the middle
of the band, �=5.49 mm, �2=−4.165, �2=−2.306, d1=0.2 mm, and
d2=0.6 mm. �b� Near the band edge, �=4.83 mm, �2=−3, �2

=−1.56, and d1=d2=0.2 mm. The coincidence of the blue solid
curve �exact� with the green dashed curve �quadratic� indicates that
the diffraction is quadratic in the PNI stack. As a comparison, the
free-space diffraction is shown as the red dash-dotted curve �exact�
and the cyan dotted curve �quadratic�.

FIG. 3. �Color online� Fractional Talbot images in the PNI stack.
The size of the square is 2 mm. �a� z=ZT /3, ZT=1.2 m; all param-
eters are the same as those in Fig. 2�a� �the middle of the band�. �b�
z=ZT /6, ZT=7.3 m; all parameters are the same as those in Fig.
2�b� �the edge of the band�. Due to the phase compensation of the
negative index medium, the Talbot distance is long.

FIG. 4. �Color online� Fractional Talbot image in the MD stack
in the presence of loss or gain. The size of the square is 0.4 �m,
z=ZT /8, and �e=9.8 fs−1. �a� �=0.0 fs−1, ZT=125.1 �m; �b� �

=0.1 fs−1 �loss�, Z̃T=125.3 �m; �c� �=−0.1 fs−1 �gain�, Z̃T

=125.3 �m. All other parameters are the same as those in Fig. 1�a�.
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cally from Eq. �3�, not from Eq. �6�. Unlike in free space
where the paraxial approximation is required to observe Tal-
bot images, upon carrying out the integration in Eq. �5� no
paraxial approximation was used. Equation �6� was used
only for providing insight into how to effectively choose
simulation parameters and for comparing the exact and
paraxial results. Further, in our simulations the sizes of the
squares in the patterns are less than the illumination wave-
length.

The interesting connection between the fractional Talbot
effects and number theory can be used to explain the image
patterns in Figs. 3–5. The fractional Talbot image can be
represented as a finite sum of spatially shifted subsidiary
waves of the source field �7,25�:

E�x,y,
p

q
ZT	 = �

s=0

l−1

bsE�x −
sa

l
,y −

sa

l
,0	 , �12�

where l=q /2 if q is a multiple of 4, l=q otherwise, and

bs = �
n=0

l−1

exp�− i2�
p

q
n2 − i2�n

s

l
	 . �13�

For example in Fig. 3�a� where p /q=1/3, the image is com-
posed of three subsidiary waves E�x ,y�, E�x−a /3 ,y−a /3�,

and E�x−2a /3 ,y−2a /3�. Thus, the spatial frequency is 3
times the original frequency. In Fig. 3�b� where p /q=1/6,
the nonzero components are b1, b3, and b5, so the image is
also composed of three subsidiary waves E�x−a /6 ,y−a /6�,
E�x−a /2 ,y−a /2�, and E�x−5a /6 ,y−5a /6�. Hence, the im-
age in Fig. 3�b� has the same spatial frequency as that in Fig.
3�a�, but is spatially shifted by a half period. In realistic
nanoplasmonic structures, material loss cannot be avoided.
The effect of material loss can be mitigated by introducing
gain inside the medium �26�. Typically, the damping factor of
metals is much smaller than the plasma frequency �13�, �
�0.01�e. As a demonstration, in Fig. 4 we compare the
fractional Talbot images in the MD stack when �=0.0 fs−1,
�=0.1 fs−1�loss�, and �=−0.1 fs−1 �gain�. In the presence of
loss or gain, the Talbot distance is a complex number; thus,
we redefine the Talbot distance as z̃T= 
zT
2 /Re�zT�. The Tal-
bot image is slightly blurred when there is a loss �Fig. 4�b��,
and is slightly sharper when there is a gain �Fig. 4�c��. It is
well known that at half a Talbot distance the Talbot image
has a reversed contrast compared to the original pattern. This
phenomenon is illustrated in Fig. 5 in the DD structure. For
practical applications, we found when the error of layer
thickness is less than 1%, the Talbot images can still be ob-
served. Any interlayer width variation is expected to have a
minimal effect since ZT�d. Since femtosecond lasers are
widely used in material fabrication, for the illumination
wavelength used in the DD and MD stacks, the Talbot im-
ages are sustainable with a wavelength variation of 7% for
the DD stack and 3% for the MD stack. This approximately
corresponds to a 100-fs laser pulses.

In conclusion we have demonstrated subwavelength-scale
fractional Talbot effects in layered heterostructures of
metamaterials without using the paraxial approximation. A
general expression of the Talbot distance in such structures
was obtained. This expression can be used in potential appli-
cations involving Talbot effects and multilayer structures of
metamaterials. The fractional Talbot effect can be explored
in material fabrication to increase the spatial frequencies of
the periodic patterns.
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